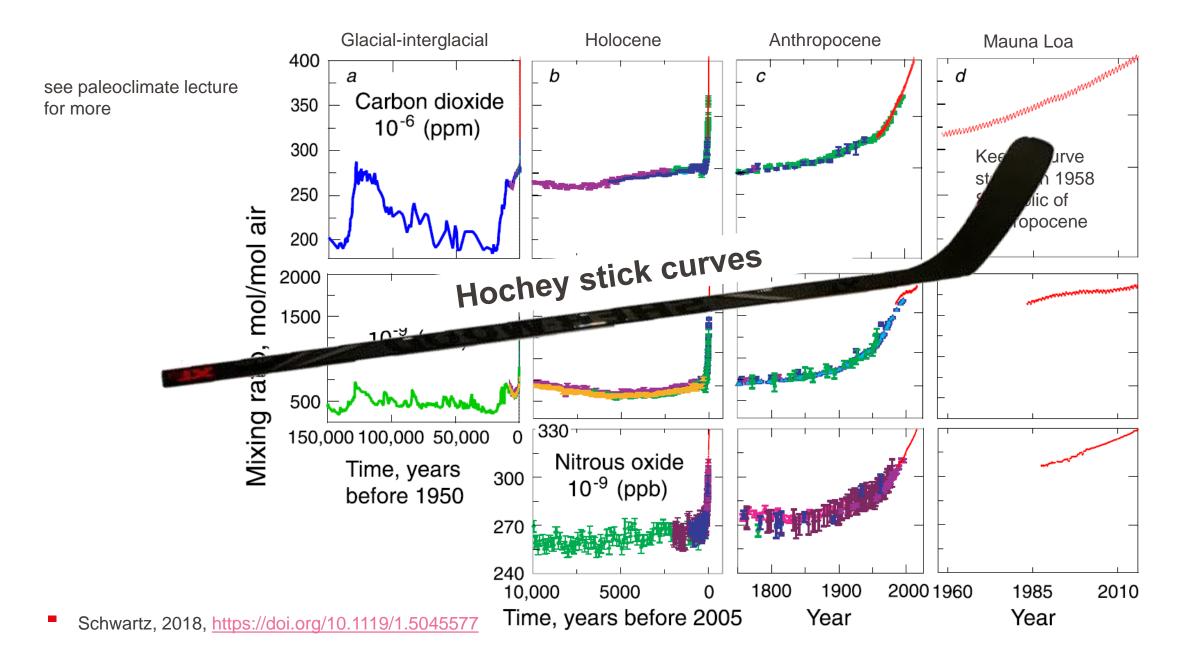


Intensified or anthropogenic greenhouse effect


- Remember: natural GHG effect is responsible for a temperature effect of +32°C
- The intensified or **anthropogenic GHG** effect results from an increase in greenhouse gases, changes in the aerosol concentrations and composition due to human activities.

Increase in greenhouse gases due to anthropogenic activity

Increase in greenhouse gases due to anthropogenic activity

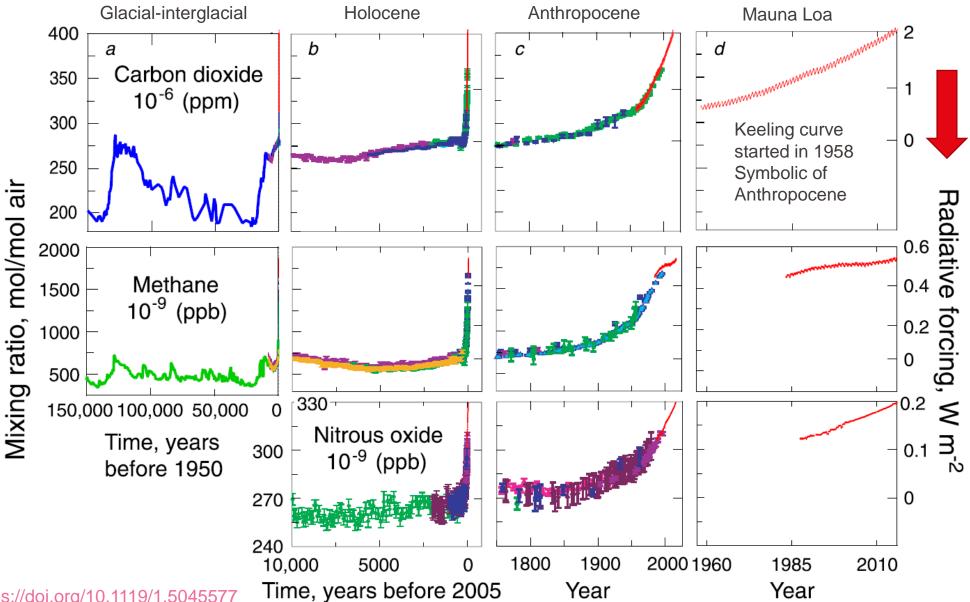
Major GHG properties

Greenhouse gas	Chemical formula	Major sources	Preindustrial concentration (ppm)	2020 concentration (ppm)	Atmospheric Lifetime (years)	Lifetime governed by
Carbon Dioxide	CO ₂	Fossil fuel combustion; Deforestation; Cement production	278	414.24	100*	*
Methane	CH ₄	Fossil fuel production; Agriculture; Landfills	700	1.879	12	Atmospheric decomposition
Nitrous Oxide	N ₂ O	Fertilizer application; Fossil fuel and biomass combustion; Industrial processes	270	333	121	Atmospheric decomposition
Chlorofluorocarb on-12 (CFC-12)	CCl ₂ F ₂	Refrigerants	0	0.527*10 ⁻³ (2011)	100	Atmospheric decomposition
Hydrofluorocarbo n-23 (HFC-23)	CHF ₃	Refrigerants	0	0.024*10 ⁻³ (2011)	222	Atmospheric decomposition
Sulfur Hexafluoride	SF ₆	Electricity transmission	0	0.0073*10 ⁻³ (2011)	3,200	Atmospheric decomposition
Nitrogen Trifluoride	NF ₃	Semiconductor manufacturing	0	0.00086*10 ⁻³ (2011)	500	Atmospheric decomposition

^{*} No single lifetime can be given for carbon dioxide because it moves throughout the earth system at differing rates. Some carbon dioxide will be absorbed very quickly, while some will remain in the atmosphere for thousands of years.

IPCC AR5, and https://gml.noaa.gov/

Major GHG properties


Greenhouse gas	Chemical formula	Major sources	Preindustrial concentration (ppm)	2020 concentration (ppm)	Atmospheric Lifetime (years)	Lifetime governed by
Carbon Dioxide	CO ₂	Fossil fuel combustion; Deforestation; Cement production	278	414.24	100*	*
Methane	CH ₄	Fossil fuel production; Agricu	700	1.879	12	Atmospheric decomposition
Nitrous Oxide	N ₂ O	Fossil combi	much shorter (hours –			Atmospheric decomposition
Chlorofluorocarb on-12 (CFC-12)	CCl ₂ F ₂	Refrig removed	by precip	itation ₀₁₁₎	100	Atmospheric decomposition
Hydrofluorocarbo n-23 (HFC-23)	CHF ₃	Refrigerants	tational so	ettling.	222	Atmospheric decomposition
Sulfur Hexafluoride	SF ₆	Electricity transmission	0	0.0073*10 ⁻³ (2011)	3,200	Atmospheric decomposition
Nitrogen Trifluoride	NF ₃	Semiconductor manufacturing	0	0.00086*10 ⁻³ (2011)	500	Atmospheric decomposition

^{*} No single lifetime can be given for carbon dioxide because it moves throughout the earth system at differing rates. Some carbon dioxide will be absorbed very quickly, while some will remain in the atmosphere for thousands of years.

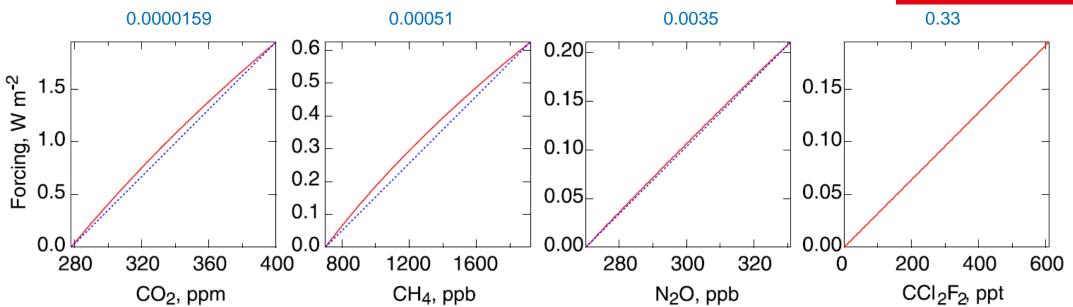
IPCC AR5, and https://gml.noaa.gov/

Increase in greenhouse gases due to anthropogenic activity

Any *pertubation* (internal or external) to Earth's energy system is called *forcing*. Same unit as energy fluxes (W m⁻²).

Schwartz, 2018, https://doi.org/10.1119/1.5045577

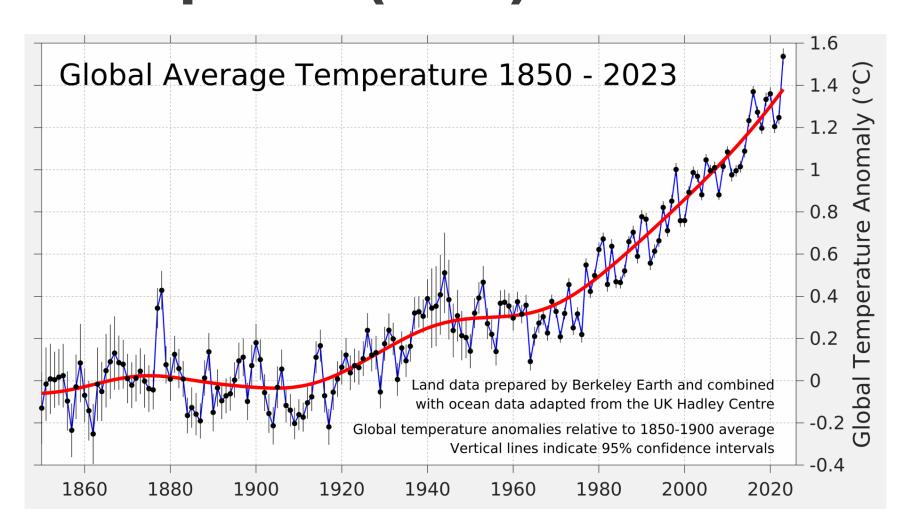
Concentration change and effectiveness


The larger the slope, the more powerfull the GHG.

Trace gas	Preindustrial mixing ratio, x_0 , ppb	2016 mixing ratio, x , ppb	Expression for forcing, W·m ⁻²	
CO_2	278×10^3	403×10^3	$5.35(\ln x - \ln x_0)$	sublinear
CH_4	700	1843	$0.036(\sqrt{x}-\sqrt{x_0})$	sublinear
N_2O	270	329	$0.12(\sqrt{x}-\sqrt{x_0})$	sublinear
CCl_2F_2	0	0.512	$0.33(x-x_0)$	linear

Used to calculate red lines in graphs.

Which GHG had the smallest RF contribution in 2016?

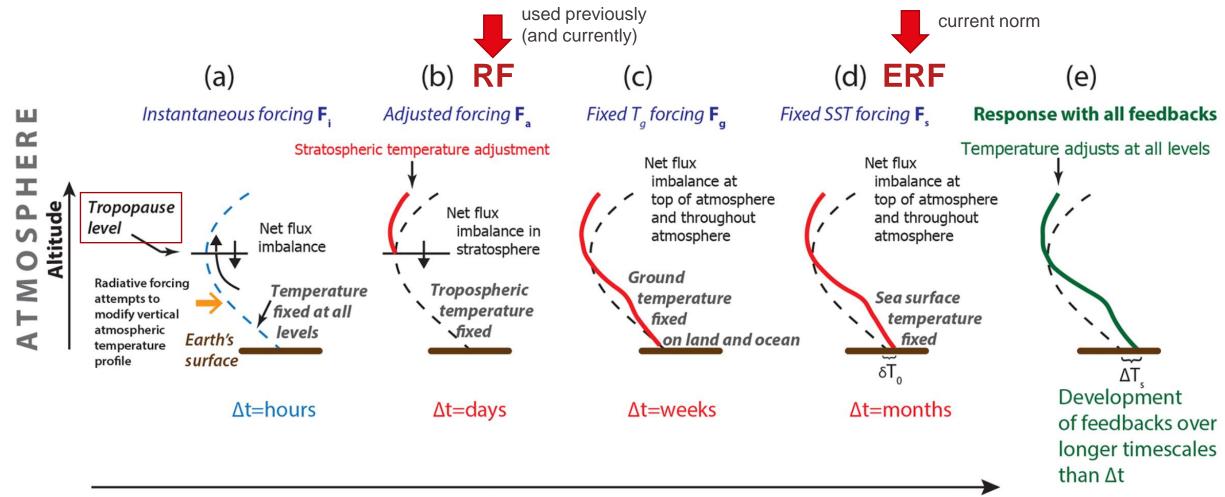

Slopes of linear fits (blue dotted): units in W m⁻² ppb⁻¹

Schwartz, 2018, https://doi.org/10.1119/1.5045577

What does this mean for the global mean surface temperature (GMST)?

Estimate based on the new IPCC AR6 summary for policy makers:

"The *likely* range of total humancaused global surface temperature increase from 1850– 1900 to 2010–2019 is 0.8°C to 1.3°C, with a best estimate of 1.07°C."

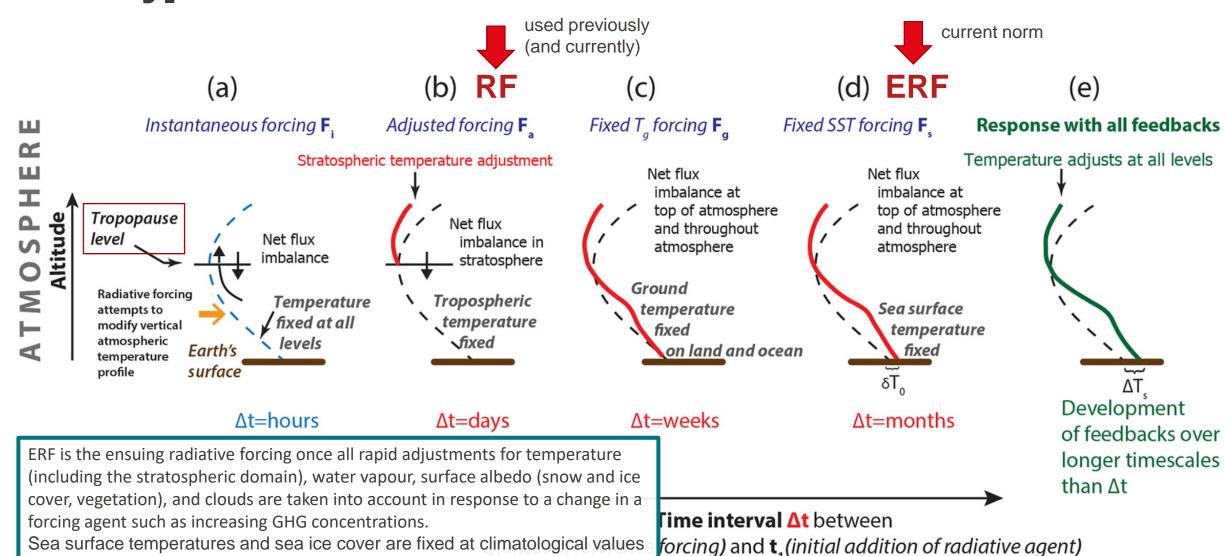

Note the difference between the annual temperature anomaly and the estimated global warming!

Radiative forcing

- A forcing that changes the radiation balance of Earth.
- <u>Fundamental definition</u>: Warming of Earth's surface and lower atmosphere is driven by radiative forcing, the difference between the flux of thermal radiant energy from a black surface through a hypothetical, transparent atmosphere, and the flux through an atmosphere with greenhouse gases, particulates and clouds, but with the same surface temperature.
- Climate science definition: Radiative forcing in climate science is commonly compared against the preindustrial time (not hypothetical atmospheres).
- Because GHG and aerosols change the thermal IR radiative flux at the TOA (net smaller flux) they induce radiative forcing.

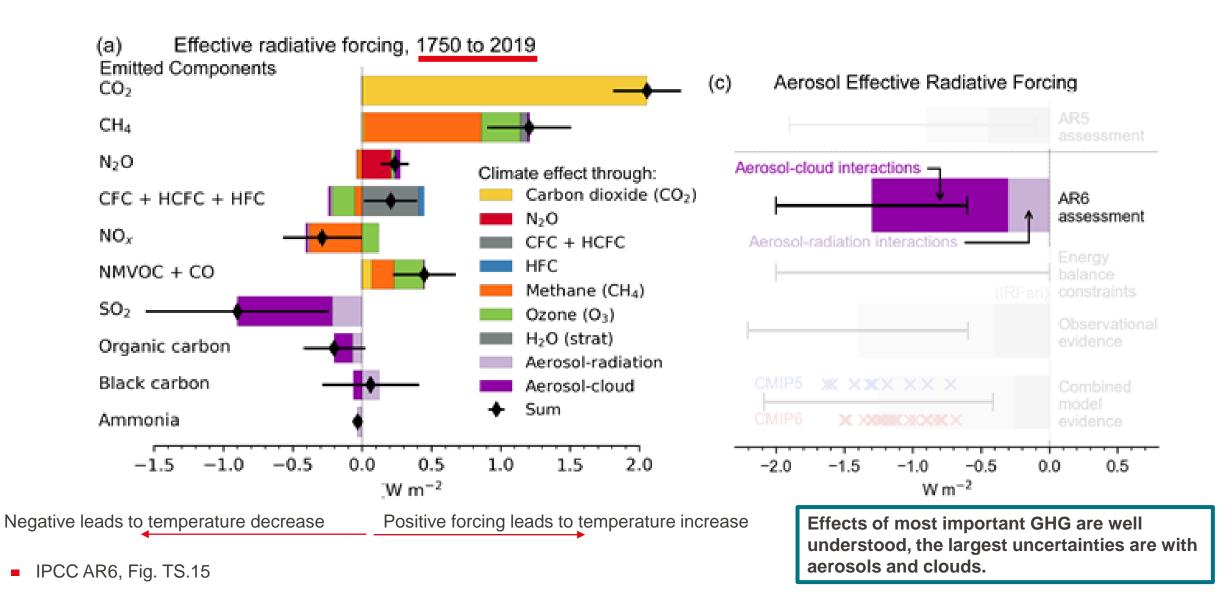
RF = Radiative Forcing ERF = Effective Radiative Forcing

Time interval ∆t between


 \mathbf{t}_{1} (onset of reference forcing) and \mathbf{t}_{1} (initial addition of radiative agent)

Types of RF

unless otherwise specified. Hence ERF includes both the effects of the

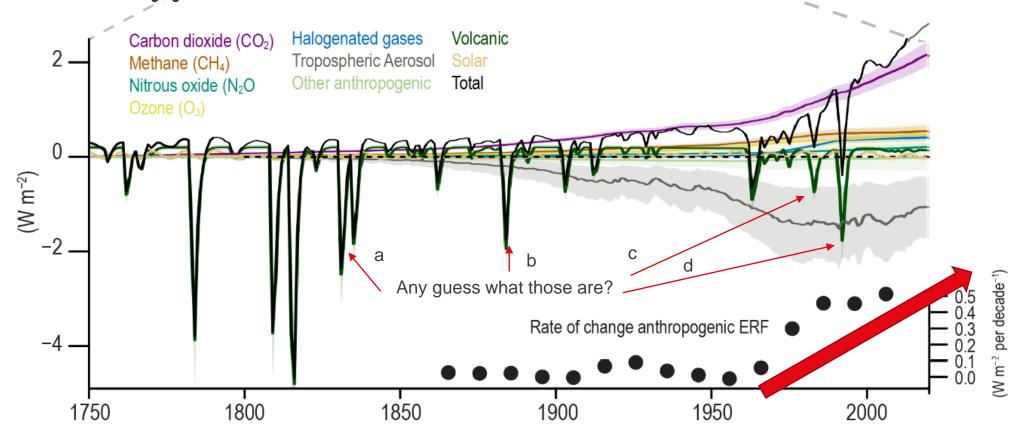

forcing agent itself and the rapid adjustments to that agent.

RF = Radiative Forcing ERF = Effective Radiative Forcing

ERF by component

GHG make up roughly 3.7 W m⁻² radiative forcing Compare: to TOA outgoing LW of -240 W m⁻²

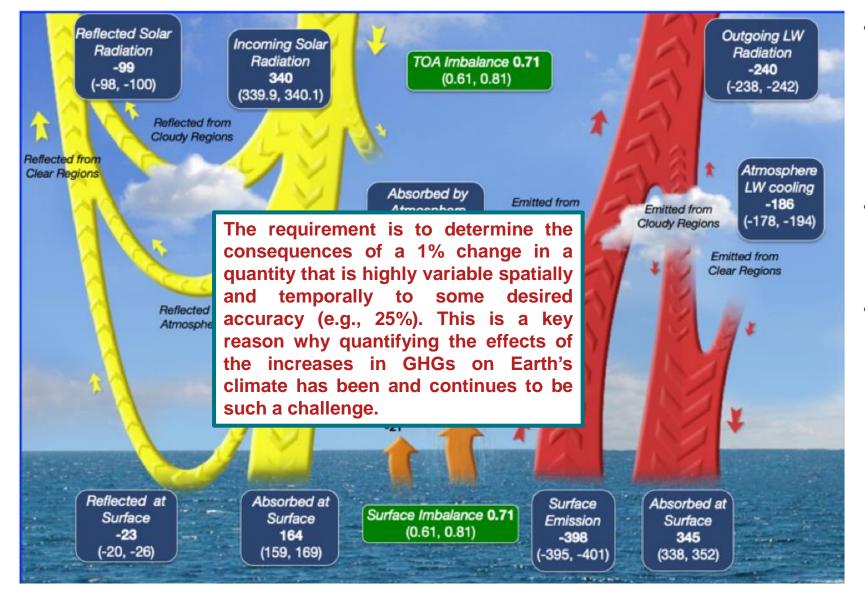
ERF longterm perspective


a - Kelud 1826, Indonesia

b - Krakatoa 1883, Indonesia

c - El Chichón 1982, Mexico

d – Pinatubo 1991, Philippines


(d) The increase in effective radiative forcing since the late 19th century is driven predominantly by warming GHGs and cooling aerosol. ERF is changing at a faster rate since the 1970s.

Rate of forcing is increasing as well!

GHG ERF cannot be measured

- other fluxes as well as most other fluxes within the atmosphere are one or several two orders of magnitude larger than the perturbation by GHG and aerosols.
- Hence, the RF by GHG and aerosols cannot be measured directly, but needs to be calculated.
- Calculation needs several ingredients:
 - Knowledge of concentration change (measurements)
 - Greenhouse gas properties: lifetime, effectiveness (next)
 - Models with realistic clouds, temperature and water vapor (upcoming)

Climate sensitivity

Generally, climate sensitivity refers to the amount of global mean surface warming (in °C or K) that will occur in response to a change of atmospheric CO₂ concentrations compared to preindustrial levels.

- «Magic» single number, which tells us how severe climate change will be?
- It's not that easy.

Climate sensitivity is a temperature.

- But very important:
 - Hot or very hot? Makes a huge economic difference, health...

See also: Knutti et al., 2017; https://www.nature.com/articles/ngeo3017?proof=t

Climate Sensitivity Definitions

Equilibrium climate sensitivity (ECS) is the equilibrium annual global mean temperature response to a doubling of equivalent atmospheric CO₂ from pre-industrial levels and is thus a measure of the strength of the climate system's eventual response to greenhouse gas forcing. It takes into account changes in water vapour, lapse rate, clouds and surface albedo. The carbon cycle and other biogeochemical feedbacks, chemistry feedbacks, and slow feedback-like changes in vegetation types and ice sheets are deliberately not included in the concept of equilibrium climate sensitivity.

IPCC AR5: ECS of 1.5°C to 4.5°C; CMIP6: ECS of 1.8°C to 5.6°C, **increased**

The Earth system sensitivity (ESS) includes very long-term Earth system feedbacks, such as changes in ice sheets or changes in the distribution of vegetative cover.

Transient climate response (TCR) is the annual global mean temperature change at the time of CO₂ doubling in a climate simulation with a 1% yr⁻¹ compounded increase in CO₂ concentration. CO₂ doubling is reached after 70 years.

TCR is a measure of the strength and rapidity of the climate response to greenhouse gas forcing, and depends in part on the rate at which the ocean takes up heat. It differs from ECS because the distribution of heat between the atmosphere and oceans will not yet have reached equilibrium.

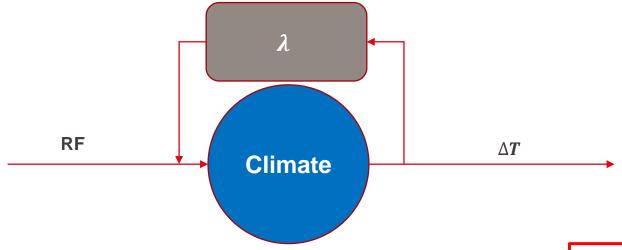
IPCC AR5: TCR of 1C to 2.5C; CMIP 6: 1.7°C (1.3°C to 3.0°C), **increased**

TCR < ECS because of oceanic heat uptake, which is a slow process. In TCR experiments, the surface ocean remains cooler and hence IR emission remains lower.

https://www.carbonbrief.org/explainer-how-scientists-estimate-climate-sensitivity Heinze et al., ESD, 2019, https://doi.org/10.5194/esd-10-379-2019

Forcing, climate sensitivity and feedback

$$N = RF + \lambda \Delta T$$


N: net top of atmosphere energy balance,

RF: radiative forcing,

 ΔT : global surface temperature response, climate sensitivity

 λ : feedback factor

Positive feedback amplifies the response Negative feedback dampens the response

Forcing, climate sensitivity and feedback are fundamental concepts to understand climate change.

To derive the climate sensitivity, we need to know the feedback factor.

Energy balance model: A simple climate model

Backbone of any climate model!

1. Net downward flux at TOA

$$F_{TOA} = (1 - \alpha)Q - \sigma T_e^4$$

σ Boltzmann constant (5.67*10⁻⁸ Wm⁻²K⁻⁴)

 T_e equivalent temperature

Q area-weighted mean incoming

solar flux (341.3 Wm⁻²)

 α planetary albedo (0.3)

2. Planetary energy budget

$$C\frac{dT_s}{dt} = F_{TOA}$$

 T_s average surface temperature C atmosphere-ocean column effective heat capacity (Jm⁻²K⁻¹)

3. Adding radiative forcing

$$C\frac{d\Delta T_s}{dt} = RF + \Delta F_{TOA}$$

 ΔT_s change of global mean surface temperature RF = radiative forcing

 T_S changes because of RF and resulting changes in radiative processes (internal to the climate system) ΔF_{TOA}

4. The **key assumption** in climate feedback analysis is that *changes in radiative flux are proportional to surface temperature changes*:

$$\Delta F_{TOA} = \lambda * \Delta T_s$$

λ is a constant of proportionality: climate feedback factor (W m⁻² K⁻¹)

$$C\frac{d\Delta T_s}{dt} = RF + \lambda * \Delta T_s$$

How much warming do we expect with a given radiative forcing?

Or, how much warming do we expect if we double the CO₂ concentration, which is about 3.7 W m⁻²?

5. With sufficient time the system will equilibrate:

$$C\frac{d\Delta T_s}{dt} = 0 = RF + \lambda * \Delta T_s$$

$$\Delta T_s = -\frac{RF}{\lambda}$$

$$\lambda = \lambda_0 + \lambda_1 + \lambda_2 + \dots = \sum_{i=0}^n \lambda_i$$

Many different climate feedbacks

 λ >0, positive feedback

λ<0, negative feedback

What's the sign of λ ?

Energy balance model: A simple climate model

Previous slide
$$C \frac{dT_s}{dt} = F_{TOA} = (1 - \alpha)Q - \sigma T_e^4$$

Need to reconcile T_s and T_e

This is a

simple climate model (only physics)! 6. Parameterize with T_s only.

$$C\frac{dT_s}{dt} = (1 - \alpha)Q - \sigma(\beta T_s)^4$$

β measures the proportionality between the surface and emission temperature $\beta = T_e/T_s = 255 \text{ K} / 288 \text{ K} = 0.885$

7. Defining λ (see appendix to lecture)

8. Calculate λ

 $\lambda = -3.3 \text{ W m}^{-2} \text{ K}^{-1}$

What does this mean?

For every 1 W m⁻² radiative forcing, our planet must warm by $-1/\lambda = 0.3$ K to establish equilibrium.

Note:

This model only represents a **single feedback process**: the increase in longwave emission to space with surface warming.

This is called the Planck feedback because it is fundamentally due to the Planck blackbody radiation law (warmer temperatures = higher emission).

$$\lambda_0 =$$
 -3.3 W m⁻² K⁻¹

$$N=RF+\lambda\Delta T$$
 RF: radiative forcing, ΔT : global surface temperature response,

N: net top of atmosphere energy balance,

λ: feedback factor

Types of feedback – fast physical

Atmospheric thermodynamic feedbacks (most certain quantification)

- 1 Planck response
- 2 The combined water vapour lapse rate feedback

Cloud feedbacks (complex and large source of uncertainty)

- 1 Rise of cloud top feedback
- 2 Tropical low -cloud feedback
- 3 Mid-latitude cloud reflectance feedback
- 4 Cloud water phase feedback

Fast fond surface feedbacks

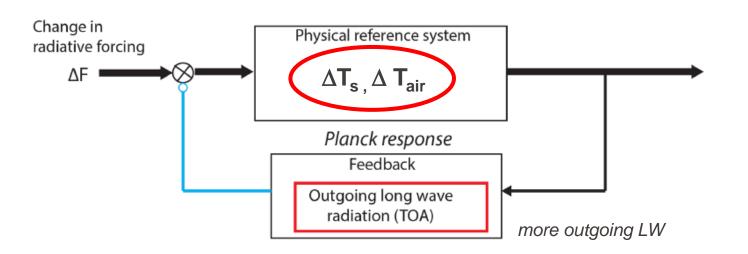
- 1 Snow albedo feedback
- 2 Soil moisture evapotranspiration feedback and CO₂ stomata-water feedback

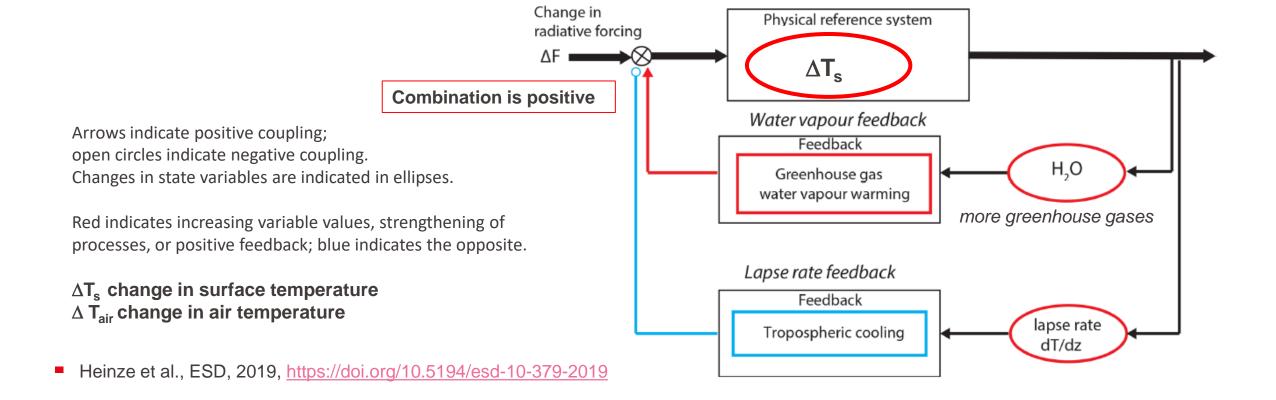
Fast ocean feedbacks

- 1 Fast ocean feedbacks: ocean mixed-layer and ocean thermocline feedbacks
- 2 Tropical circulation responses to a warming climate

Sea ice feedbacks

- 1 Sea ice albedo feedback
- 2 Sea ice negative feedbacks


Thermal longwave (LW) heat redistribution including water vapour and moisture

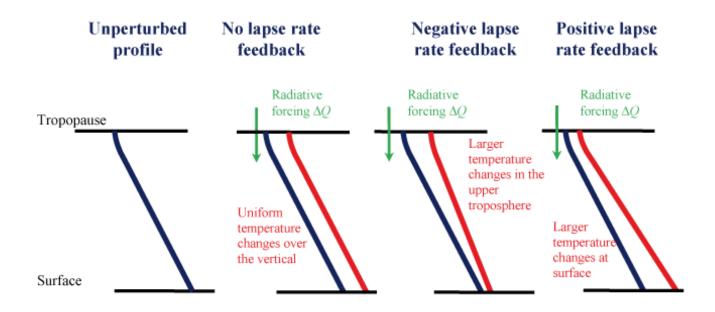

Thermal shortwave (SW) reflectivity / albedo

both LW and SW effects

Italic to be discussed in the lecture.

Planck response, water vapour and lapse rate feedback

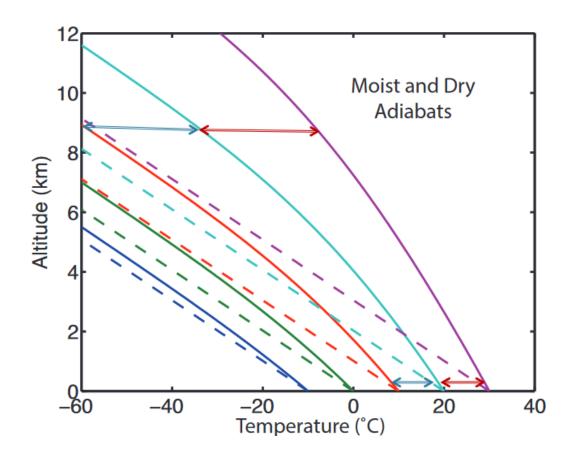
Planck response, water vapour and lapse rate feedback


Planck response:

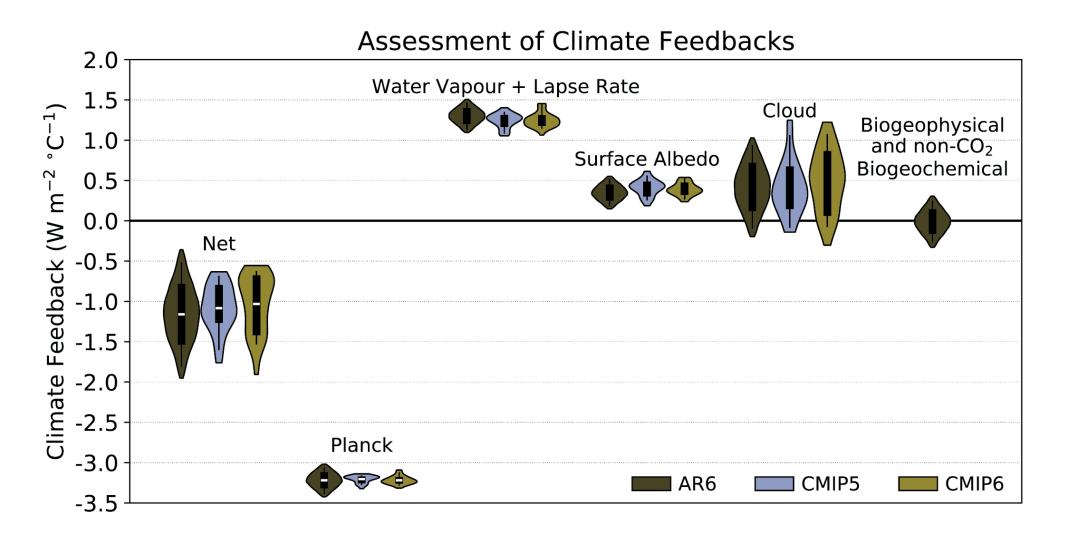
 Single largest and negative feedback. Based on Stefan-Boltzmann law. Increase of LW radiation to space due to surface warming. Only if the Planck feedback is overcome by other positive feedbacks, a runaway greenhouse effect can be expected.

Water vapour and lapse rate feedback:

- The warmer the atmosphere, the more water vapour it can hold. Water vapour is a greenhouse gas. The RF resulting from water vapour is roughly proportional to the logarithm of its concentration. Hence more warming occurs, where the unperturbed situation is rather dry (higher troposphere, cold regions).
- For the lapse rate it means that the higher troposphere warms more than the surface and the lapse rate becomes less steep and the greenhouse effect therefore becomes less efficient (more radiation to space from higher troposphere). Hence the lapse rate is a negative feedback.


Lapse rate feedback explained

- Lapse rate: the moist adiabatic lapse rate is expected to decrease with warming tropospheric temperature. This means the outgoing LW radiation to space increases (loss of energy).
 - Above is particularly true for tropical regions where greenhouse gases lead to tropospheric warming (further aloft) due to increased convection from the surface.
 - In the mid- to high latitudes, the surface tends to warm relatively more such that the lapse rate becomes steeper and results in a positive feedback (colder troposphere and less LW radiation loss to space).
- Overall, for the water vapour and lapse rate feedbacks the exact changes of temperature and humidity in high altitudes are not yet well known, but since the effects cancel each other out, their combined uncertainty is nevertheless relatively small.


Moist adiabatic lapse rate in a warming climate

- The warmer the surface the smaller the moist adiabatic lapse rate.
- There is a warming amplification with altitude.

Summary of physical feedback factors

Types of feedback – fast physical

Atmospheric thermodynamic feedbacks (most certain quantification)

- 1 Planck response (black body radiation)
- 2 The combined water vapour and lapse rate feedback

Cloud feedbacks (complex and large source of uncertainty)

- 1 Rise of cloud top feedback
- 2 Tropical low -cloud feedback
- 3 Mid-latitude cloud reflectance feedback
- 4 Cloud water phase feedback

Fast surface feedbacks

- 1 Snow albedo feedback
- 2 Soil moisture evapotranspiration feedback and CO₂ stomata-water feedback

Fast ocean feedbacks

- 1 ocean mixed-layer and ocean thermocline feedbacks
- 2 Tropical circulation responses to a warming climate

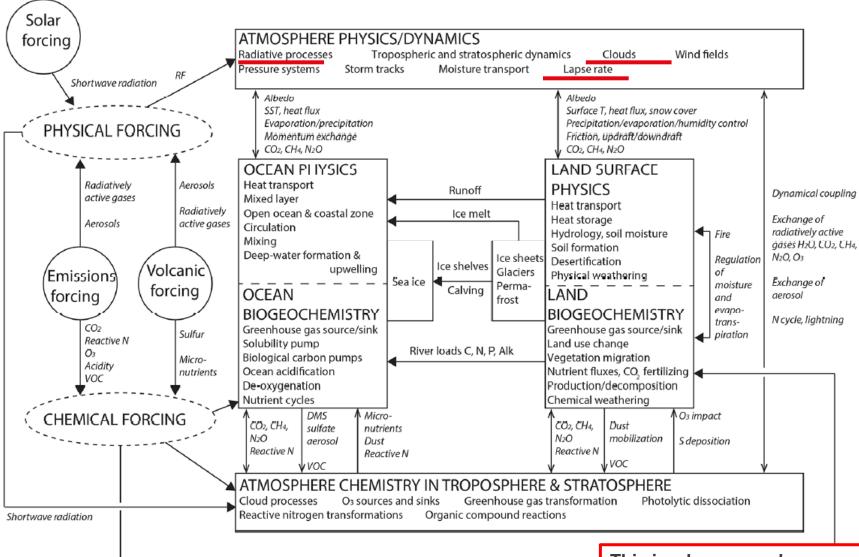
Sea ice feedbacks

1 Sea ice albedo feedback

Color legend

Thermal longwave (LW) heat redistribution including water vapour and moisture

Thermal shortwave (SW) reflectivity / albedo


both LW and SW effects

Upper ocean feedback

- Fundamental physical properties of the ocean are very different compared to the atmosphere: heat capacity, viscosity, and timescales of motion.
- The evolution of climate change depends critically on the penetration rate of the global warming signal into the ocean and the capacity of the ocean to uptake heat from the atmosphere.
- Ocean—climate feedback timescales range from the synoptic to seasonal, decadal, or even centennial.

There are many more feedbacks

Long time scale effects:

- Deep ocean
- Ice sheets

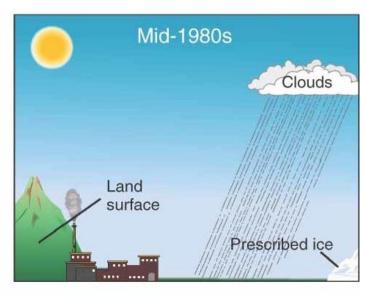
Biogeochemical effects

- Vegetation growth
- fires
- Marine emissions
- Inorganic ocean carbon cycle
- Aerosol effects

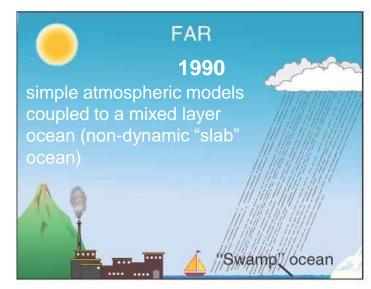
This is why we need more complex climate models including also biogeochemical processes.

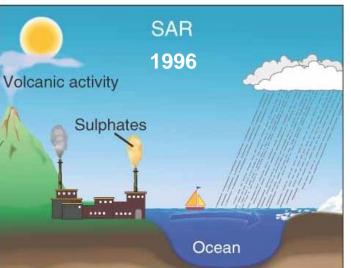
Heinze et al., ESD, 2019, https://doi.org/10.5194/esd-10-379-2019

Evolution of climate models


General circulation models (GCMs):

- «Dynamical core» simulates large-scale fluidic motion using primitive equations.
- «Model physics» simulate climate-relevant physical processes (e.g. radiative transfer).

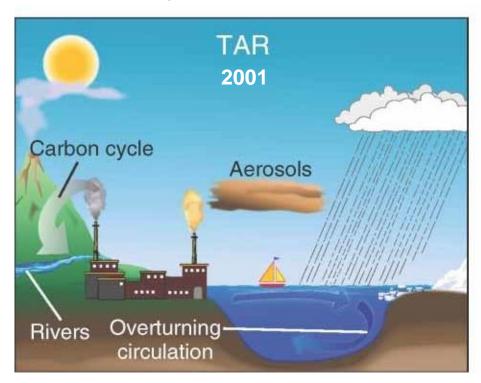

Mid-1970s

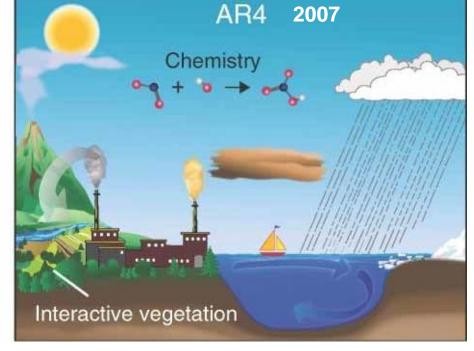

Simple ECS experiments.

Co2

First estimate of transcient climate response: increase CO₂ by 1% each year until doubled (ca. 70 years): TCR

Established CMIP 2 for intercomparison of transcient responses. CMIP: coupled model intercomparison project


FAR: First assessment report


SAR: Second AR

Evolution of climate models

Creation of time-dependent emission scenario runs. Establish TCR experiments.

Atmosphere-ocean general circulation model

How do we now derive climate sensitivity?

$$N = RF + \lambda \Delta T$$

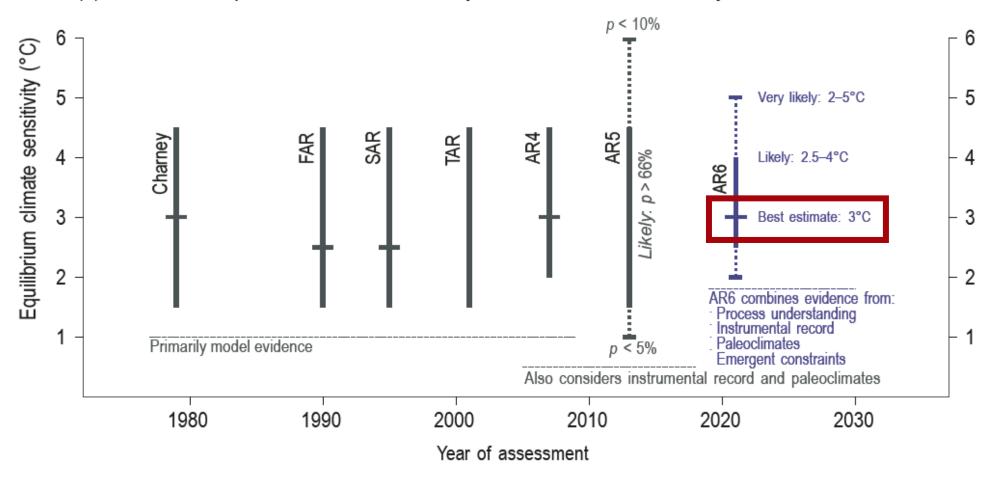
N: net top of atmosphere energy balance,

RF: radiative forcing,

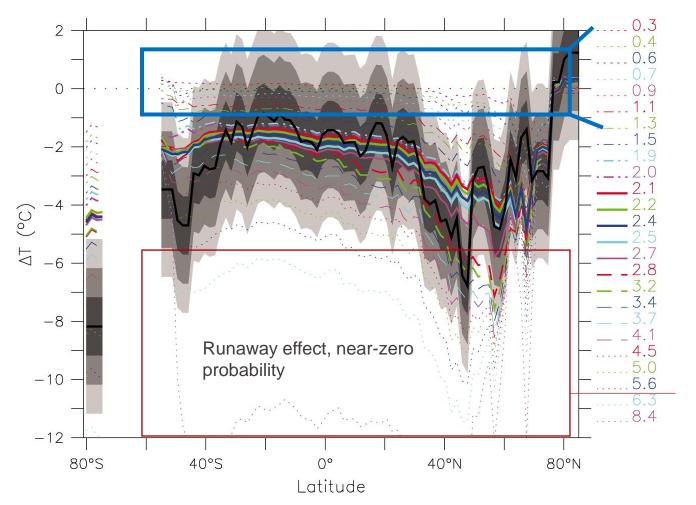
 ΔT : global surface temperature response,

λ: feedback factor

• For a given forcing associated with a doubling of atmospheric CO_2 concentration (with a radiative forcing of about 3.7 W m⁻²), at equilibrium N = 0, we can solve for ΔT , a quantity known as the "equilibrium climate sensitivity" (ECS).


Gregory method:

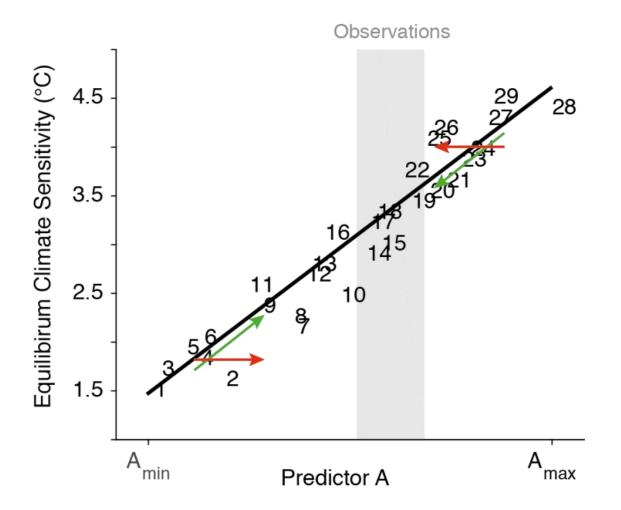
- The ECS calculated by the Gregory method is derived from a fully coupled Earth system model and does not require equilibrium to actually be achieved.
- In the Gregory method, CO₂ is instantaneously quadrupled in a fully coupled Earth system model and run for 150 years.
- As the surface temperature asymptotes toward equilibrium, the slope of the time-evolving curve of the net top-of-atmosphere radiance against the surface temperature is calculated to extrapolate the eventual temperature increase at equilibrium some time far in the future for a doubling of CO₂, assuming that there is a roughly linear response that is half of the warming from a quadrupling of CO₂.



Evolution of climate sensitivity

(a) Evolution of equilibrium climate sensitivity assessments from Charney to AR6

Constraining with paleoclimate records



Zonally averaged surface temperature change between the LGM and modern. Thick black line denotes the climate reconstructions, the gray shading the ± 1 , 2, and 3 K intervals around the observations. Modeled temperatures, averaged using only cells with reconstructions are shown as colored lines labeled with the corresponding ECS_{2xC} values.

- Models with ECS_{2xC} < 1.3 K underestimate the cooling at the LGM almost everywhere, particularly at mid-latitudes and over Antarctica,
- Models with ECS_{2xC} > 4.5 K overestimate the cooling almost everywhere, particularly at low latitudes.
- High-sensitivity models (ECS_{2xC} > 6.3 K) show a runaway effect resulting in a completely ice-covered planet. Once snow and ice cover reach a critical latitude, the positive ice-albedo feedback is larger than the negative feedback because of reduced longwave radiation (Planck feedback), triggering an irreversible transition.
- During the LGM, Earth was covered by more ice and snow than it is today, but continental ice sheets did not extend equatorward of ~40°N/S, and the tropics and subtropics were ice free except at high altitudes.
- Results thus suggest that large climate sensitivities (ECS_{2xC} > 6 K) cannot be reconciled with paleoclimatic and geologic evidence and hence should be assigned near-zero probability.

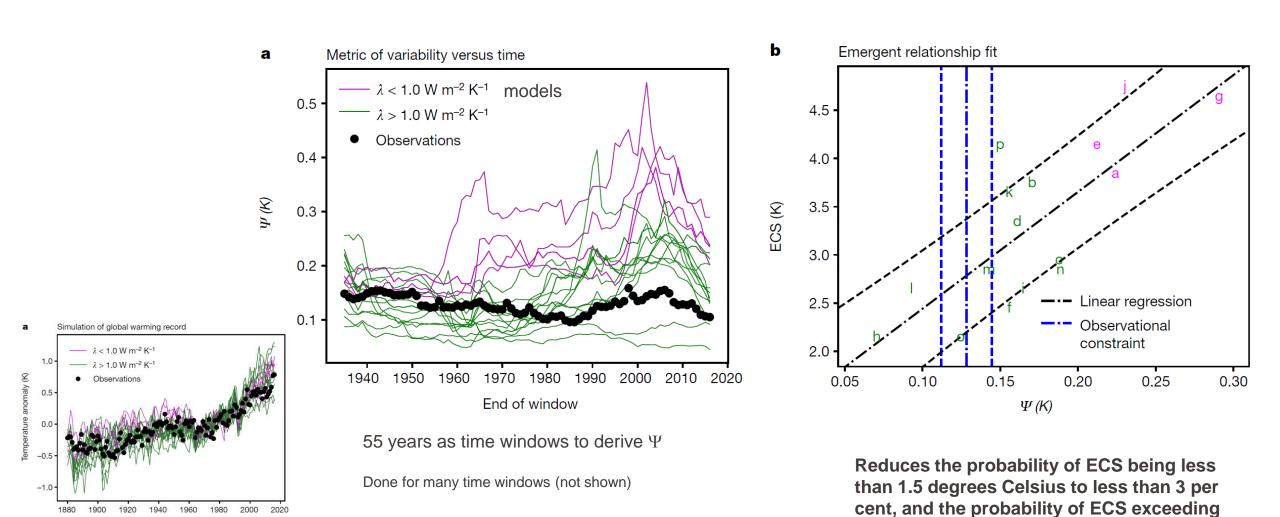
Constraining with emergent constraints (the concept)

Hypothetical relationship between a predictor A and the equilibrium climate sensitivity (ECS) for 29 climate models.

Predictor A may represent, for example, the variability of the surface temperature over time. On the y-axis, ECS may be replaced by any climate-change projection. The black line is the linear regression, and the grey vertical bar is the observed value of predictor A (with its uncertainty).

Arrows show the evolution of ECS after improving the representation of predictor A for two climate models having low (4) and high (24) ECS values.

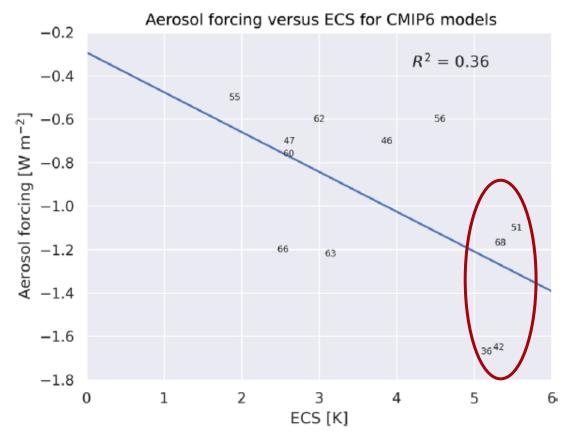
If these climate models evolve following the red arrows, the relationship may have been found by chance. If they evolve following the green arrows, mechanisms underlying the relationship gain credibility.


Since predictor A can be observed, this relationship can be considered as an emergent constraint.

4.5 degrees Celsius to less than 1 per cent.

EPFL

Constraining with emergent constraints

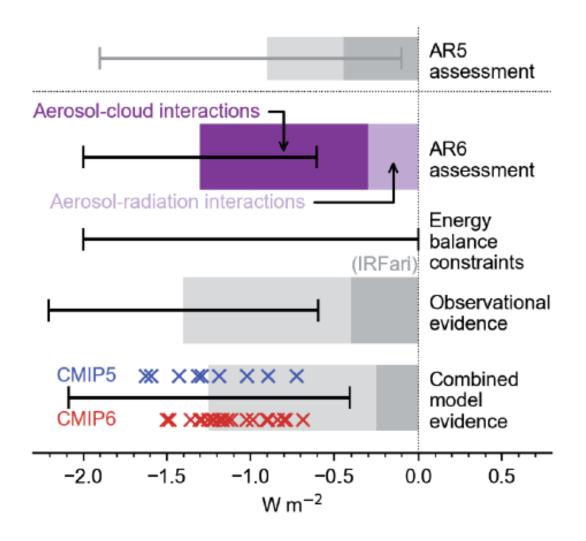

Temporal variability (Ψ) of the surface air temperature as observable metric to constrain ECS.

Cox et al., 2018, Nature, doi:10.1038/nature25450

Why larger range of ECS with the newest generation of climate models?

Fig. 4. Effective radiative forcing from aerosols versus ECS. Values supplied by the modeling groups (Table 3); black line is linear fit with R^2 of 0.36. The numbers denoting individual models are listed in Table 2.

- Newer climate models include more complex treatment of aerosols.
- Aerosols interact with clouds which strongly influence the radiative forcing effect of aerosols.
- If the aerosol forcing is more negative, the climate sensitivity to CO₂ forcing needs to be higher to end up with the same rate of warming.
- However, CMIP6 models only show a week correlation (R² = 0.36).


Models with prognostic aerosol schemes and aerosol-cloud interactions.

It is difficult to pinpoint the exact feedback mechanisms in the models that lead to high ECS. But overall "cloud feedbacks and cloud-aerosol interactions in models with prognostic aerosol schemes seem to be playing an important role".

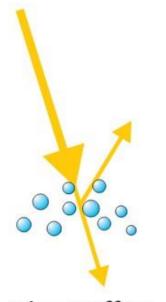
Critical to research

Meehl et al., Science Advances, 2021, https://advances.sciencemag.org/content/6/26/eaba1981/tab-pdf

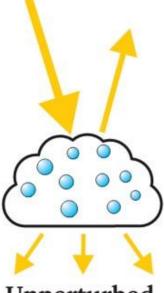
Uncertainty from aerosols and clouds

B. How can we reduce uncertainties from aerosol and cloud forcing?

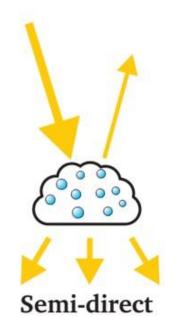
defining the preindustrial

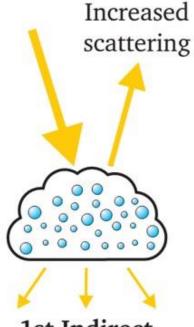

Cloud feedbacks and cloud-aerosol interactions are the most likely contributors to the high values and increased range of ECS in CMIP6.

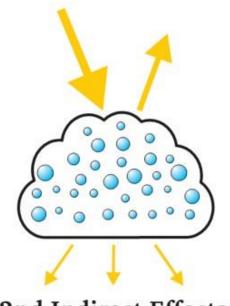
Meehl et al., Science Advances, 2021



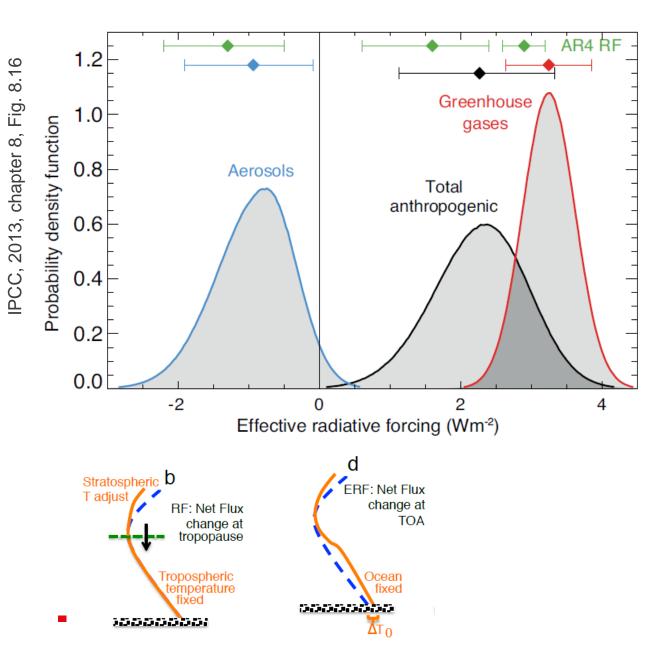
Aerosol-cloud interactions (ACI)


Incoming solar radiation

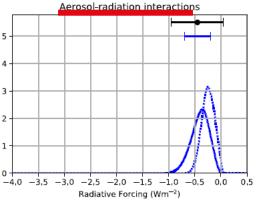

Direct Effect
Scattering/
absorption


Unperturbed cloud

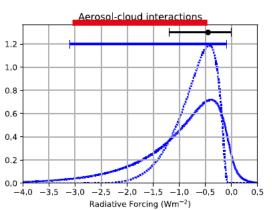
Effect Cloud burn-off

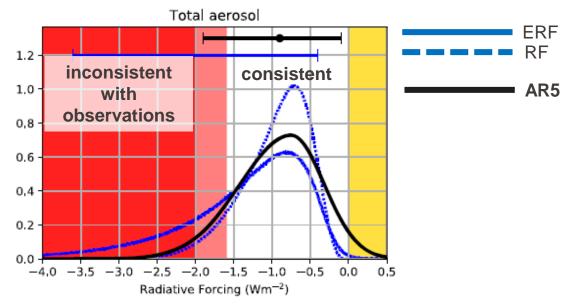


1st Indirect Effect Increased CDNC


2nd Indirect Effects
Drizzle suppression
Increased cloud height
Increased cloud lifetime

ERF from ARI and ACI


AR5 vs now: better constrained


(less strong rapid adjustments)

AR5 vs now: less constrained

(wider assessment of rapid adjustments)

Bellouin et al., Rev. of Geophys., 2020

The challenge of climate science: small relative quantities!

- We deal with small magnitudes of the changes in radiative fluxes and global temperature relative to the magnitudes of the initial, unperturbed quantities to determine current and future climate change.
- The observed change in global means surface temperature of about 1.07 K represents a change of about 0.3% relative to the initial 287 K. Even the 2 K increase represents a change of less than 1%.
- The challenge to the climate change research community is to gain quantitative understanding of the changes in quantities influencing climate change and the expected response of the system to the accuracy necessary for informed decision making regarding prospective controls on future emissions of climate influencing substances.
- Such quantitative understanding is essential to answering "what if" questions regarding the consequences of future emissions of climate influencing substances.